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Abstract:

The Abaeté hydrographic basin was infl uenced by sediments (Proterozoic and 
Cretaceous) and by volcanism (Upper Cretaceous). The objective was to identify 
whether the drainage confi guration is due to structural factors or by neotectonics. 
We use geomorphic indices (Basin Asymmetry Factor, Stream Length-gradient 
Index - SL, and Channel Steepness Index - k

sn
). We elaborate longitudinal profi les 

in the rivers of sub-basins. We apply the Random Forest (RF) Machine Learning 
algorithm in the prediction of the SL and k

sn
 indices, with the selection of relevant 

covariates. The RF was effi  cient in predicting, with better performance in the k
sn

 
(R2 0.38), and indicating the areas of infl uence of the indices. The highest values 
of the indices are in zones of lithological contact with diff erent resistances, 
favoring a sharp change in channel slope (knickpoints). In these zones, there 
is also a predominance of sub-basins tilted, and the longitudinal profi les of the 
rivers show uplift or subsidence. Therefore, structural factors conditioned the 
drainage of the basin. 
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1. Introduction

The river systems are sensitive to the evolution 
of the relief, generating changes in the morphology 
of the rivers  (FONT et al., 2010), abrupt changes in 
slope in the longitudinal profi le of the river (AMBILI 
& NARAYANA, 2014), and asymmetric basins (EL 
HAMDOUNI et al., 2008). Therefore, studies use 
analysis of the drainage network to identify structural 
control (KALE et al., 2014), and also deformations by 
neotectonics (GARROTE et al., 2008; MONTEIRO et 
al., 2010; ALVES et al., 2019).  

Visual assessment of drainage characteristics is 
essential, but quantitative methods are complementary 
and make the analysis more objective, and geomorphic 
indices perform this function. Among these indices, 
the Stream Length-gradient Index method (SL), iden-
tifi es abrupt changes in slope along the profi le (knick-
points) (HACK, 1973). Based on the SL indices, the 

Normalized channel steepness index (k
sn

) (WOBUS 
et al., 2006), has the advantage of inserting variables 
according to the drainage characteristics (CASTILLO 
et al., 2014). There is also the Basin Asymmetry Factor 
index, capable of identifying tilted hydrographic basin 
(HARE & GARDNER, 1985). Studies demonstrate 
the effi  ciency of these methods in diff erent geological 
contexts (GARROTE et al., 2008; FONT et al., 2010; 
MONTEIRO et al., 2010; CYR et al., 2014; SOUZA & 
PEREZ FILHO, 2017), providing a quick assessment 
for large areas, and with quantitative data.

The geographic information system (GIS) com-
bined with topographic data from digital elevation 
models (DEM), represent an advance in the extraction 
of geomorphic indices (TROIANI et al., 2014; ALVES 
et al., 2019). However, some data may have limitations 
in cartographic representation, for example, the SL and 
k

sn
 indices are represented by points (MONTEIRO et 

al., 2010) or by drainage network (Eඅ HAMDOUNI 

Resumo: 

A bacia hidrográfi ca de Abaeté foi infl uenciada por sedimentação (Proterozóico e Cretáceo) e processo vulcânicos 
(cretáceo superior). O objetivo foi identifi car se há um controle estrutural dos sistemas fl uviais relacionado ao 
vulcanismo ou por neotectônica. Utilizamos os índices geomórfi cos (Fator de Assimetria de Bacia, Stream Length-
gradient Index – SL, e Channel Steepness Index - k

sn
); elaboramos perfi s longitudinais nos rios de sub-bacias. 

Aplicamos o algoritmo de Aprendizado de Máquina Random Forest (RF) na predição dos índices SL e k
sn

, com 
seleção de covariáveis importantes. O RF foi efi ciente na predição, com melhor performance em k

sn
 (R2 0,38), e 

indicando as áreas de infl uência dos índices. Os valores mais altos dos índices estão em zonas de contato litológico 
com diferentes resistências, favorecendo mudanças acentuadas de declividade no canal (knickpoints). Nessas 
zonas, também há predominância de sub-bacias basculhadas, e os perfi s longitudinal dos rios mostram elevação 
ou subsidência. Portanto, fatores estruturais condicionam os sistemas fl uviais da bacia.
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et al., 2008; CASTILLO et al., 2014). Therefore, to 
advance the cartographic representation, studies use 
kriging methods, creating homogeneous zones of in-
fl uence of the indices (knickzones) (Pඣඋൾඓ‐Pൾඪൺ et al., 
2009; FONT et al., 2010). However, kriging effi  ciency 
depends on point density, spatial dependence and aniso-
tropy  (OLIVER & WEBSTER, 1990); therefore, these 
characteristics that can be limiting, justify testing new 
methods of prediction.

Recently, Machine Learning algorithms (ML) 
has gained prominence in spatial prediction studies. 
In general, ML has the advantage of performing spa-
tialization from point values (variable), based on a 
database in raster format (predictive covariates), and 
using some statistical algorithm (KUHN & JOHNSON, 
2013). Studies show the effi  ciency of ML in the area of 
geology (CRACKNELL et al., 2014), geomorphology 
(MOHAMMADY et al., 2019) and pedology (SOUZA 
et al., 2018; GOMES et al., 2019). Besides, ML can 
perform better than the kriging method (CLODOAL-
VES, 2019), especially when the variables do not have 
spatial dependence; however, there are no studies on the 
prediction of geomorphic indices with ML.

 Most studies with geomorphic indices are on 
tectonically active margins, focusing on neotectonics 
(SEEBER & GORNITZ, 1983; TROIANI et al., 2014). 
However, in Brazil, passive margin, some studies attest 
to the occurrence of neotectonic processes, by abrupt 
changes in river direction, knickpoints, and straight 
rivers (ETCHEBEHERE et al., 2004; SOUZA et al., 
2011; DORANTI-TIRITAN et al., 2014), with some 
characteristics quantifi ed by geomorphic indices.  

In Brazil, major tectonic events occurred mainly in 
the separation of the South American continent with Af-
rica, with successive continental lava spills, becoming 
the largest in the world, since the late Jurassic (FODOR 
& HANAN, 2000). However, post-rift-phase, the South 
American plate passed over a thermal anomaly (Trin-
dade hotspot), promoting intense magmatism (alkaline 
and basaltic) (FRAGOSO et al., 2011). The phenom-
enon formed kamafugite volcanic and subvolcanic 
rocks, recognized, in addition to Brazil, in two locations 
in the world, in Africa (Uganda and Zaire) and Europe 
(northeast of Italy) (SGARBI, 2000). 

 In addition to the deposition of volcanic materi-
als (Cretaceous), such events also generated a set of 
geological faults (SGARBI, 2000), with the possibility 

of reactivation in the Quaternary, being able to change 
the morphology of the current drainage. Some studies 
demonstrate reactivation processes in the interior of 
Brazil, for example, in the region of Poços de Caldas-
Minas Gerais, by reactivation of the Triassic shear zones 
(GROHMANN et al., 2007; DORANTI-TIRITAN et 
al., 2014). 

This study aims to identify evidence of structural 
and/or neotectonic control using geomorphic indices 
and prediction methods of indices by the Machine 
Learning. The study area is the Abaeté hydrographic 
basin, located in the central portion of the state of Minas 
Gerais, where there was an intense process of sedimen-
tary deposition during the Proterozoic and volcanism 
in the Cretaceous.

1.1 Physiography and geological framework

The study area is the Abaeté hydrographic basin, 
located in southeastern Brazil (Minas Gerais state), 
between the coordinates -17 ° 85 ’to -19 ° 36’ latitude S 
-45 ° 21 ’to -46 ° 31’ longitude W, with an area of 5,824 
km2 (Figure 1). The climatic domain is Cwa (Köppen 
classifi cation), with an average annual precipitation of 
1,700 mm. 

The basin has Proterozoic and Cretaceous sedi-
mentary rocks and the infl uence of magmatic activity 
during the Cretaceous (Figure 1). In general, in Pro-
terozoic lithologies, occur depressions and dissected 
areas. On the other hand, the Cretaceous rocks form 
plateaus, forming two morpho sculptural compart-
ments, one preserved surface (Mata da Corda Group), 
the other dissected (Areado Group) (OLIVEIRA & 
RODRIGUES, 2007). 

The first sedimentation occurred Proterozoic 
forming the Bambuí Group rocks, predominantly 
siliciclastic mixed with carbonate (Uඁඅൾංඇ et al., 
2019). The Lagoa Formosa Formation corresponds to 
older deposits, occurring upstream of the basin. The 
Formation is composed predominantly of Siltite, with 
small intercalations of Clay Siltite, Argilite, and in 
lesser quantity Sandstone. In general, the outcrops are 
intensely fractured and very weathered (FRAGOSO et 
al., 2011). 

   The Serra de Santa Helena Formation occurs as 
a small strip downstream of the basin, limited by two 
faults SW-SE direction. They are predominantly peli-
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tic sediments, with Slates, Siltstones, Shales and fi ne 
Quartzites, Limestones, dark Metapelites and Marble. 
The Serra da Saudade Formation (Neoproterozoic) has 
a larger area, with shales, green Argilites and Siltstones 
(“Verdete”) (LIMA et al., 2007). In this region, the 
drainage has high sinuosity indicating structural con-
trol, and there are some fault systems (SW-SE). The 
Três Marias Formation occurs in the downstream, with 
the presence of Arcosean Sandstones, Sandstones and 
Siltstones. The rocks are fractured, and the main river 
fl ows over a geological fault (FRAGOSO et al., 2011). 

The second sedimentation process occurred in the 
Cretaceous and is related to crustal stretching generated 
during the opening of the South Atlantic. This extensio-

nal phase produced a basin with a Graben/Horst system 
(FRAGOSO et al., 2011).  The region was fi lled with 
predominantly continental sediments (Grupo Areado), 
forming pinkish to reddish and yellow sandstones, with 
the presence of fractures. The rocks form mainly the 
basal part of the basin plateaus, where the drainage has 
sections with subsidence.

In Upper Cretaceous, volcanic processes occurred 
in the region, forming the Mata da Corda Group, and are 
currently at the top of the plateaus. These are alkaline 
rocks of eff usive, pyroclastic, plutonic, and epiclastic 
origin, due to spills and even of explosive origin (Ka-
mafugites) (FODOR & HANAN, 2000; BAGGIO et 
al., 2015). 

Figure 1 - (A) location of the study area; and (B) Geological map of the Abaeté basin.
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2. Materials and Methods

2.1 Longitudinal profi le and geomorphic indices

  We used Digital Elevation Model (DEM) 1 arc-
second Shuttle Radar Topographic Mission (SRTM) 
(JARVIS et al., 2008) to extract the drainage network 
and delimit sub-basins based on the drainage order ≥ 4 
(STRAHLER, 1957). 

We elaborate longitudinal profi les for each sub-
basin associating the DEM and the main river. The 
profi les allow identifying anomalous sections of the 
drainage in relation the best fi t line with a coeffi  cient R2 

> 0.80. We consider anomalous stretches (subsidence/
uplift) the distances greater than 10 m, referring to the 
best fi t line (SANTOS et al., 2011). 

We applied three geomorphic indices, Basin 
Asymmetry Factor (AF), Stream Length-gradient Index 
(SL), and Normalized Channel Steepness Index (k

sn
). 

The AF indices allow the identifi cation of tilted sub-
basins (EL HAMDOUNI et al., 2008). AF values close 
to or equal to 50 indicate that the basin is symmetrical. 
Values > 50 indicate tilting of the right bank of the river 
(facing downstream), and values < 50 indicate tilting of 
the left margin of the basin (Equation 1)

                    AF = (Ar/At).100             Equation 1

where AF: basin asymmetry factor; Ar: right basin 
area (i.e., facing downstream); and At: total area of the 
drainage basin.

The Stream Length-gradient Index (SL) allow as-
sessing drainage anomalies (HACK, 1973). In general, the 
longitudinal profi le of the river tends to exhibit concave 
curvature, while abrupt changes in slope are considered 
anomalous conditions and appear as steps along the river 
(knickpoints). The knickpoints may be related to diff er-
ential erosion of rocks, lower fl ow tributary junction, and 
upstream erosion due to lower base level; once discarding 
these possibilities, neotectonics appears as an explanation 
(KELLER & PINTER, 1996). To calculate the SL index, 
we use the Knickpoint Finder software (QUEIROZ et 
al., 2015). The software calculates the index for the total 
drainage extent (SLt), for segments (SLs), and determines 
classes of anomalies based on the SLs/SLt ratio (SEEBER 
& GORNITZ, 1983). (SLs/SLt > 10 1st order anomalies, 
between 2 and 10, 2nd order anomalies, and < 2 without 
anomalies). Equations 2, 3 and 4, respectively.

  

                                           Equation 2

                                           Equation 3

                                                                                                                  

                            Equation 4

where:  L: total length of the channel; ∆H: elevation dif-
ference between the extremes of a given stream reach; 
∆h = elevation diff erence in the segment; ∆l = length of 
the segment. 

We used the  Normalized Channel Steepness Index 
(k

sn
) (WOBUS et al., 2006), which is derived from the 

slope–area regression, and generates a normalization of the 
variables by the channel concavity indices (Equation 5). 

                              𝑆=𝐾
𝑠
×𝐴−𝜃                               Equation 5

where S: channel slope; K
s
: channel–steepness index; 

A: drainage area (surrogate of stream discharge); θ: 
concavity index (slope–area regression).

The k
sn
 index allows correlating rates of uplift and 

denudation of a hydrographic basin concerning the evo-
lution of longitudinal profi les. Regarding the concavity 
index (𝜃ref), the value of 0.45 is generally used, which is 
a reference for bedrock rivers (CASTILLO et al., 2014). 
However, the applicability of 𝜃ref in mixed alluvial-bed-
rock channel can lead to misinterpretations. Therefore, we 
chose to calculate a specifi c value of 𝜃 for each sub-basin 
(SOUZA & PEREZ FILHO, 2017), where 𝜃 is obtained 
from the linear regression values of the correlation be-
tween the slope and the accumulated area in log-log. The 
variables to obtain the k

sn
 index were inserted in Topoto-

olbox 2.0 in programming language Matlab®, it is a set 
of scripts to extract k

sn
 values from a DEM automatically 

(SCHWANGHART & SCHERLER, 2014).

2.2 Spatial prediction SL and k
sn

 indices

We applie  d a methodological framework in R 
software (RCORE TEAM, 2016) to predict the SL and 
k

sn
 indices (Figure 2). The script is with the Random 

Forest algorithm, which performs classifi cation and 
regression analysis and allows data to be predicted for 
non-sampled areas (BREIMAN, 2001). The RF uses a 
group of covariates and provides statistics on the preci-
sion and uncertainty of the prediction process.
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The RF uses point data (variable), but the k
sn

 is 
represented by a drainage network. To associate this 
information, we convert the results from k

sn
 to raster 

and extract the value at each point in SL. Another step, 
consisted in the elaboration of the covariate database 
(raster format). SRTM geom orphometric covariates 
(36), listed in Gomes et al. (2019); Sena et al. (2020); 
geology and geotectonic map (2) (PINTO et al., 2003); 
geomorphology map (1); and asymmetry factor (1). 

In genera l, spatial prediction studies using ML, 
indicate that the excess of covariates does not guarantee 
better results, and also increases the computational pro-
cessing time  (KUHN & JOHNSON, 2013; SOUZA et 
al., 2018; GOMES et al., 2019). To reverse this problem, 
we applied two steps: (i) we discard covariates with high 
correlation concerning the database (Pearson > 95%) 
by fi ndcorrelation (KUHN & JOHNSON, 2013); (ii) 
we selected a group of covariates by RFE  (Random 
Forest-Recursive Feature Elimination) (GRANITTO et 
al., 2006; KUHN & JOHNSON, 2013), and the ideal 
subset criterion was an R2 with a 3% decrease concern-
ing the subset with the highest R2.

The prediction uses the subset of covariates select-
ed by RF-RFE. However, to avoid a biased prediction 
process, we generate the prediction 50 times. During 
each step, the RF algorithm randomly selects 75% of 
the samples for training and validates with 25%. This 

process is essential because it indicates the variability 
of the prediction since diff erent clusters of data gener-
ate diff erent results (KUHN & JOHNSON, 2013). The 
result is 50 maps for each geomorphic index, and the 
average of the maps is the fi nal result.

The model  also provides statistical data that 
shows accuracy (coeffi  cient of determination R2) and 
error (root mean squared error RMSE, and mean ab-
solute error MAE), usual procedures in ML (KUHN 
& JOHNSON, 2013; CHAGAS et al., 2018; SOUZA 
et al., 2018; GOMES et al., 2019). The values of R2 
RMSE and MAE are obtained with equations 6, 7 and 
8, respectively.

                                     Equation 6 

                      

                 Equation 7

 

                          Equation 8

where x
obs

 is the observed value; x
mod

 is the predicted 
value by the use of the Machine Learning algorithm; n 
is the number of observations.

Figure 2 - Flowchart of the methodological sequence to obtain the geomorphic indices (AF, SL e ksn), the predictive covariates, and the 

prediction process with Random Forest algorithm with selection of important covariates, and 50 times training and validation process.
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The analy sis of the geomorphic indices was supported 
by the comparative analysis with other information (geo-
logy, geomorphology, drainage confi guration, longitudinal 
profi le, geomorphometric data, and basin asymmetry).

3. Results

The sub-b asins tend to be symmetrical in the areas 
of lower elevation with smoothed reliefs, and the sub-
-basins tilted are located to the south, in escarpment 
areas of the highlands, showing similar tilting direction 
(Figure 3). The region has geological faults, predomi-
nantly perpendicular to the rivers, except in the downs-
tream area, where there is a fault in the main river bed.

The longi  tudinal profi les showed that in the zones 
of lithological contacts, there is an uplift or subsidence 
of the profi le concerning the best fi t line (Figure 4). For 
examp le, the uplift of the profi le occurs in rocks of the 
Três Marias Formation (sub-basins 1 and 2), whereas, in 
the contact areas of the Mata da Corda/Areado Groups, 
there is a predominance of subsidence (sub-basins 4 e 5).

The SL indices identifi ed 912 points (knickpoints), 
with maximum values of 50 SLt, 783 SLs, and 26 SLs/

SLt. The k
sn

 indices classifi ed 1,715 km of drainage, 
with a maximum value of 293 and an average of 42. 

The predi ction of indices by ML used covariates 
to assist in the prediction (KUHN & JOHNSON, 2013; 
SOUZA et al., 2018). From the fi ndcorrelation and 
RF-RFE function, a maximum of 11 covariates was 
selected in the prediction in the SLt, and a minimum of 
7 in the SLs/SLt, ranked by level of importance (Table 
1). Among the covariates, three predominated in the 
selection of the RFE, (Ls Factor, Standardized Height, 
Morphometric Protection index), and the geology co-
variate was signifi cant in the second k

sn
 prediction level.

The predi  ction process was effi  cient; the values of 
R2 in training and validation were similar, showing low 
overfi tting (KUHN & JOHNSON, 2013). The highest 
R2 was in k

sn
 (R2 0.38) and lower in SLs/SLt (0.25). The 

RMSE and MAE evaluate the error in the prediction 
process, and the values are expressed in units of the 
analyzed variable (KUHN & JOHNSON, 2013). There-
fore, in our results, the RMSE and MAE were below 
the average in each index, and there was low variation 
(CV% variation coeffi  cient) in the 50-runs predictions. 
CV% was higher than 10% only in the SLs and k

sn
 

indexes, while the majority was <5 (Tables 1 and 2).  

Figure 3 - (A) Asymmetry factor of sub-basins (AF) and tipping direction; (B) Digital elevation model, indicating sinuous relief fronts 

associated with geological faults (B1), and rectilinear relief fronts (B2).  
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Figure 4 - Longitudinal profi les of rivers in the sub-basins and identifi cation of lithological changes (vertical lines). A.G: Areado Group; 

M.C.G: Mata da Corda Group; L.F.F: Lagoa Formosa Formation; T.M.F: Três Marias Formation; S.S F: Serra da Saudade Formation; 

S.S.H.F: Serra de Santa Helena Formation.

Table 1: Performance of the Random Forest algorithm and selection of covariates using RF-RFE in the prediction of 

geomorphic indices.

Variable R2 RMSE X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

SLt 0.25 9.22 2 1 5 7 11 12 9 14 3 16 15

SLs 0.27 104.52 1 3 2 8 10 13 15 15 ns ns ns

SLs/SLt 0.13 4.55 1 3 6 8 7 2 15 ns ns ns ns

Ksn 0.38 25.90 1 4 2 9 7 14 3 12 16 ns ns

X1, X2... X11: Importance levels; 1: LS factor; 2: Standardized Height; 3: Morphometric protection index; 4: Geologia; 5: Normalized 

height; 6: Curvature profi le; 7: Cross Sectional Curvature; 8: Curvature longitudinal; 9: Channel base level; 10: Slope; 11: Mid slope 

positon; 12: DEM; 13: Real surface area; 14: Terrain surface texture; 15: Curvatute minimal; 16: Slope height; ns: Not selected:
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In the spatial distribution of the indices (Figure 
5), the highest SLt, SLs, SLs/SLt, and k

sn
 values are 

mainly on plateaus and steep zones of the basin, where 
lithologies of the Areado and Mata da Corda Group oc-

cur. The indices tend to rise in the areas of geological 
faults, for example, in downstream of the basin, a fact 
more evident in the SLt and k

sn
 indices.

Table 2: Statistical performance of the Random Forest algorithm in the spatial prediction of geomorphic indices (50 

predictions). 

Variable R2 CV (%)
R2 RMSE

CV (%)
RMSE

MAE
CV %
MAE

Training

SLt 0.14 (± 0.02) 15.57 9.21 (± 0.23) 2.46 6.64 (± 0.15) 2.28

SLs 0.23 (± 0.02) 10.59 104.84 (± 5.26) 5.02 68.10 (± 2.16) 3.18

SLs/SLt 0.15 (± 0.02) 13.92 4.53 (± 0.14) 3.11 3.24 (± 0.08) 2.54

K
sn

0.39 (± 0.02) 5.74 25.39 (± 1.27) 5.01 17.42 (± 0.56) 3.22

Validation

SLt 0.14 (± 0.03) 24.79 9.30 (± 0.51) 5.53 6.61(± 0.51) 4.19

SLs 0.22 (± 0.04) 18.10 104.11 (± 12.45) 11.95 67.60 (± 12.45) 4.97

SLs/SLt 0.13 (± 0.04) 28.11 4.51 (± 0.32) 7.10 3.20 (± 0.32) 4.62

K
sn

0.37 (± 0.05) 13.82 26.15 (± 2.95) 11.26 17.61 (± 2.95) 5.72

Figure 5 -  verage maps of geomorphic indices (SLt, SLs, SLs/SLt, and ksn) from the Random Forest algorithm.
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The distribution of indices (SLt, SLs, SLs/SLt, 
k

sn
) by geological units (Figure 6), showed the high-

est averages in rocks of the Três Marias Formation in 
the downstream portion. In the sequence, the rocks 
of the Serra de Santa Helena Formation showed high 
averages, and this lithology occupies a small territorial 

extension and has only 18 points (knickpoints). In the 
Mata da Corda Group with 41 knickpoints, the aver-
age of the SLt was similar concerning other geological 
units. Moreover, in all indices there was a low variation 
trend, concentrating the values from the fi rst to the third 
quartile and close to the average.

Figure 6 - Mean, median, standard deviation, 1st and 3rd Quartile, near and far outliers and interquartile range of geomorphic indices 

(Stream Length – gradient index by total drainage extension (SLt), by segments (SLs), ratio (SLs / SLt); and Normalized Channel Steepness 

index (Ksn)). They are separated by geological domains: A.G: Areado Group; M.C.G: Mata da Corda Group; L.F.F: Lagoa Formosa 

Formation; T.M.F: Três Marias Formation; S.S F: Serra da Saudade Formation; S.S.H.F: Serra de Santa Helena Formation.

4. Discussion

4.1 Prediction of geomorphic indices (SL e k
sn

)

In spatial prediction, ML effi  ciency depends on 
three steps: (i) the R2 values of the training and valida-
tion process cannot diff er signifi cantly; (ii) the contri-
bution of predictive covariates to explain the spatial 
distribution of variables; and (iii) of the statistical levels 
of error of the prediction (YESILNACAR & TOPAL, 
2005; KUHN & JOHNSON, 2013; SOUZA et al., 2018; 
GOMES et al., 2019).

The prediction of the indices indicated the best 
performance in k

sn
 (R2 0.38) and the lowest in SLt (R2 

0.25) (Table 1). Although there are no studies on the 
prediction of geomorphic indices by ML, there are 
studies in other areas that classify R2 < 0.50 as good. 
for example, Gomes et al. (2019) studying carbon in 
the soil, identifi ed R2 from 0.28 to 0.32; and Yesilnacar 
& Topal (2005) in mapping landslides, obtained R2 be-
tween 0.36 to 0.49. In general, the better performance 
of R2 is highly dependent on the nature of a data set, as 
well as covariates that assist in the prediction. 
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A better  indicator of ML performance is when 
the R2 values of training and validation do not diff er 
signifi cantly (low overfi tting) (KUHN & JOHNSON, 
2013). Therefore, R2 high in training and low in the 
validation process, indicates that the model is good at 
predicting with a portion of samples, but fails to predict 
in unsampled areas when subjected to validation, this 
being the main function of the model (MEYER et al., 
2018). Thus, in  our results there was no overfi tting and 
the model trains and validates appropriately (Table 2), 
and the architecture of the RF model contributes to low 
overfi tting (BREIMAN, 2001). Further more, during 
the 50 predictions the values of R2 varied little (CV%).    

Regarding the selection of predictive covariates, 
three covariates were predominant (Table 1). The Ls-
factor, as it measures the length and gradient of the slope; 
Standardized Height, indicates the vertical distance 
between the base and standardized slope index; e Mor-
phometric Protection Index, a measure of the openness/
protection calculated by analyzing the degree to which 
the surrounding relief protects the given cell. In all cases, 
the predominance of these covariates is consistent, since 
the indices (SL and k

sn
) are related to changes in slope, 

being a predominant aspect in the covariates. 

Concernin g the uncertainty of prediction (Table 
2), three characteristics of the error indicate good per-
formance: (i) RMSE levels were below the average of 
the values of the indices (ii) RMSE e MAE during the 
50 predictions varied little (CV%); and (iii) error lev-
els were similar in training and validation. Therefore, 
statically the performance of RF in the prediction of 
geomorphic indices was satisfactory, and our results 
confi rm that RF is a robust prediction algorithm, cor-
roborating with other studies (NൺඐAR & MOUAZEN, 
2017; GOMES et al., 2019). 

4.2 Spatial variability of geomorphic indices and 
longitudinal profi le

The regio n of steep terrain in the south of the basin, 
where there are rocks from the Mata da Corda and Areado 
Groups, predominates sub-basins tilted to the right (AF = 
61 to 73) (Figure 3 and Figure 1). The concentration and 
predominance of the same tilting direction are indicative 
of a common structural control among the sub-basins. 
In general, we observed that there are geological faults 
that tend to be perpendicular to the main river of the 
sub-basins. However, when tipping is by neotectonics, 
the geological faults are located close to the central axis 
of the basin (SALAMUNI et al., 2008), and only in sub-

basins 1 and 4 did it show this characteristic.

The litho  logy can promote a structural control gen-
erating asymmetric basin (EL HAMDOUNI et al., 2008). 
Therefore , some characteristics of the Mata da Corda Group 
can control the landforms, forming plateaus (OLIVEIRA & 
RODRIGUES, 2007). The presence of ferruginous laterites 
and compact lithologies (Figure 7A and Figure 7B) inhibits 
vertical and lateral water fl ow (BAGGIO et al., 2015). How-
ever, the underlying rocks (Areado Group) do not have the 
same lithological resistance, and this favors the formation 
of cliff s on the plateaus and altitude gradient infl uences the 
confi guration of the sub-basins. 

The react ivation of geological faults is not the main 
factor for tilting sub-basins in the region. For example, in 
sub-basin 4 (AF = 73), there is a geological fault parallel 
to the main river, coinciding with an escarpment, which 
even controls drainage, as the main river presents an in-
fl ection for SE (~ 90°) (Figure 3). However, the origin of 
the fault is related to the Graben/Horst system, originated 
during the South Atlantic rift phase (FRAGOSO et al., 
2011). In this sector, due to the distinct lithological resis-
tance in the contact of the Mata Corda/Areado Groups, 
it favors the asymmetry of the basin.

The Mata da Corda Group protects the top of the re-
lief, forming a residual plateau with escarpments with high 
sinuosity (OLIVEIRA & RODRIGUES, 2007) (Figure 
3B

1
). The sinuosity is indicative of the non-reactivation of 

geological faults in the Quaternary, since in mountain fronts 
bounded by active faults tend to have a linear geometry 
(KELLER & PINTER, 1996; MODENESI-GAUTTIERI 
et al., 2002). However, the geological fault favors the ero-
sive processes, contributing to the formation of steep slopes, 
and this infl uences the asymmetric basins.

Although our analyzes do not indicate reactivation 
of geological faults, this does not extinguish the occur-
rence of neotectonic processes. In some sectors, there are 
rectilinear relief forms associated with geological faults 
(Figure 3B

2
); therefore, we just indicate that this is not a 

signifi cant factor in generating asymmetric sub-basins.

  In the  plateaus and escarpments, the indices va-
lues are higher (SL, SLs, SLs/SLt and k

sn
); we attribute 

this result to the elevation gradient in zones of litholo-
gical contact. This fact is evident when we observe the 
longitudinal profi le of the rivers (Figure 4). In general, 
in the areas of contact between Cretaceous and Prote-
rozoic, the profi le assumes a steep slope (Cretaceous), 
and a smoother profi le (Proterozoic). This behavior is 
because the sediments of the Areado Group have less 
resistance than the Proterozoic rocks (Figure 7C). 
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In genera l, steep river channels due to resistant ro-
cks, has low incision rates of the channel, while channels 
steep due to rapid rock uplift rates, then both channel 
incision and hillslope erosion should be high (CYR et al., 
2014). Therefore, this last characteristic does not occur, a 
fact evident in sub-basins 5, 6, 7, and 8 (Figure 4).

The old l  andforms (Graben/Horst system) (FRA-
GOSO et al., 2011), also infl uence the drainage and 
confi guration of sub-basins. Over time, the ablation of 
part of the sediments that fi lled the Graben (FRAGOSO et 
al., 2011; BAGGIO et al., 2015) forming escarpments at 
the edges of the plateaus (OLIVEIRA & RODRIGUES, 
2007), exposing rocks with diff erent lithological resis-
tances, favoring the formation of knickpoints. Therefore, 
these changes are refl ected in the longitudinal profi le. 
According to Larue (2008), the knickzones of lithological 
origin maintain strong vertical stability during all the 
river incision stages, and this characteristic occurs in sub-
-basins 4, 5 and 6 (Figure 4), however, in areas with less 
lithological variation along the river, the profi le assumes 
a more stable confi guration concerning the best fi t line, 
for example, sub-basins 7 and 8 (Figure 4).

Another fact that infl uences drainage is the shear 

zones. The origin of the magmatism of the Mata da Corda 
Group is also related to shearing (CAMPOS & DAR-
DENNE, 1997; FRAGOSO et al., 2011). Therefore, in 
shear zones are areas of weakness and forms a sharp chan-
ge in slope, as in the sub-basin 4 geological fault (Figure 
3). Furthermore, the magmatism process also infl uenced 
the Bambuí Group because magmatism generated folding 
slopes and uplift of sedimentary strata (CAMPOS & 
DARDENNE, 1997). This factor can also confer higher 
resistance to rocks and forming knickpoints, including in 
the contact zones (Cretaceous/Proterozoic), the SL and 
k

sn
 indexes remain high (Figure 1). 

The SL and k
sn
 indexes are also high downstream 

from the basin, presumably related to sets of geological 
faults (NW - SE), in the rocks of the Serra de Santa Helena 
Formation. Besides, the Bambuí Group rocks have distinct 
diagenetic stages (CAMPOS et al., 2015)2015, infl uencing 
the incision capacity of the drainage. This characteristic 
is evident in some sections of the longitudinal profi le of 
sub-basins 1, 2 and 3 (Figure 4), since in the Três Marias 
Formation, the longitudinal profi le becomes convex or 
rectilinear; even the Metarenite and Siltstone typical of the 
unit are very silicifi ed (Figure 7D) (CHAVES et al., 2013).

Figure 7 -  (A e B) Rocks of the Mata da Corda Group, with emphasis on resistant/compact lithology (A) and ferruginous concretion band 

(B); (C) Erosive discordance between Proterozoic sediments (Lagoa Formosa Formation) and Cretaceous sediments (Areado Group); (D) 

Metapelitic rocks of the Bambuí Group of the Três Marias Formation emphasizing the strata.
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In the B ambuí Group, studies indicate that there 
is a generalized fracturing that controls the current 
drainage morphology (IGLESIAS & UHLEIN, 2009), 
and this aspect reinforces that the lithological resistance 
infl uences higher values of the geomorphic indices.  
Therefore, in the basin, the high geomorphic indices, 
tilted basins and anomalies in the longitudinal profi le, 
are more related to structural control by lithological 
resistance and reactivation of Proterozoic geological 
faults during the Cretaceous and derived implications. 
Our results do not exclude the possibility of neotecton-
ics, including studies showing this eff ect in the Bambuí 
Group (CAMPOS & DARDENNE, 1997; CAMPOS 
et al., 2016). However, neotectonic is not an essential 
drainage control factor in the study area. 

Conclusions

In the b  asin, structural factors infl uence drainage 
strongly, and these factors are interconnected. There is 
a diff erential erosion due to zones of lithological con-
tact, geological faults of the Proterozoic, and ancient 
confi guration of the relief (Graben/Horst). These fac-
tors favored the formation of topographic unevenness, 
infl uencing the tilting of sub-basins.

The zones of lithological contact (Mata da Corda/
Areado Groups and Proterozoic/Cretaceous rocks) 
contribute to the formation of knickpoints, with high 
values of geomorphic indices (SL and k

sn
). The analy-

sis of the longitudinal profi le of the drainage confi rms 
this information since areas of uplift or subsidence of 
the profi le coincide with zones of lithological changes.

The Random Forest Algorithm (RF) can be used to 
predict geomorphic indices (SL and ksn). The similar-
ity of R2 values in the training and validation process 
demonstrates that the RF can predict in unsampled areas, 
creating maps with zones of infl uence (knickzones). 
Furthermore, the prediction error was low (RMSE e 
MAE).  

The RF performed the prediction selecting be-
tween 7 and 11 covariates and ranking by importance 
levels. The geomorphometric covariates predominated. 
However, in predicting of better performance (k

sn 
R2 

0.38), there was the selection of the geology covariate, 
this indicates that when inserting covariables with a bet-
ter relationship with the geomorphic indices, it should 
positively aff ect.  
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